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Nonsingular self-preserving regimes of coagulation-condensation process
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Growth of disperse particles is considered assuming that the preexisting disperse particles coagulate and
grow simultaneously by condensing a low volatile substance~vapor, in what follows! whose concentration is
permanently refreshed by a spacially uniform and constant in time source. The kinetics of the condensation-
coagulation process is studied under the assumption that the condensation rate and coagulation kernels are
homogeneous functions of the particle masses. The power exponents characterizing these functions define the
asymptotic self-preserving regimes of the particle growth. Four such regimes are detected:~i! the mass of the
disperse phase consumes all vapor and grows linearly with time, while the vapor concentration grows~or even
drops! with time as its powers,1; ~ii ! the mass of the disperse phase grows slower than a linear function of
time, while the vapor concentration grows asymptotically as time;~iii ! the mass of disperse phase remains
finite; and~iv! both, the mass of disperse phase and the vapor concentration grow linearly with time. For all
above regimes the equations are derived defining the shape of the asymptotic mass distribution. The latter is
shown to depend on a combination of the particle mass and time. The theory is illustrated by two exactly
soluble models, and numerical results for the condensation-coagulation growth of aerosol particles in free
molecular regime.

DOI: 10.1103/PhysRevE.64.031605 PACS number~s!: 68.03.Fg, 05.70.2a, 64.60.Qb
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I. INTRODUCTION

The self-preserving dynamics is not a rarity for nonline
systems. Still every new self-preserving solution of a non
ear dynamic equation is always an event. Self-preserving
gimes are usually attributed to the asymptotic behavior
complex nonlinear systems when the system ‘‘forgets’’
initial conditions at large times. The self-preserving regim
in coagulating systems are of special importance and h
been studied already for more than half a century@1–5#.

The investigations of coagulation processes recei
much attention in the last several decades from the spe
ists of very diverse areas~and not only physics!. There are
deep reasons for this. First, the list of the phenomena rel
to coagulation is impressive: aging of aerodisperse syst
and hydrosols@1,2,4–6#, formation of astrophysical object
@7#, formation of traffic jams@8,9#, sol-gel transitions~see
Ref. @10# and references therein!, evolution of random graphs
@11#—the problem, which is, in turn, related to a number
social phenomena@12#, and evolution of fractal systems@10#.
Particularly coagulation and condensation processes are
sential in the formation of nanomaterials~see, e.g.,@13#!, and
in the formation of the atmospheric aerosols@2,5,14#. The
latter process is of great importance in considering the
mate changes via aerosol-cloud-climate interactions. Sec
being simple from the first sight, this process reveals a h
diversity of regimes and even unexpected new phenom
like sol-gel transitions@15–18#.

The physics of the coagulation process is surprisin
simple: two clusters containing respectively,g andl elements
~monomers! coalesce and produce irreversibly one cluster
the total massg1 l ,

~g!1~ l !→~g1 l !.
1063-651X/2001/64~3!/031605~8!/$20.00 64 0316
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Once the rate of the elementary coalescence act is kn
as a function of the masses of colliding particles, the kine
of coagulation processes is described by the Smoluchow
kinetic equation, the right-hand side of which~the collision
term! balances the gain and the loss in the cluster popula
of given mass. The collision term is usually quadratic in t
cluster concentrations, which permits one to construct
self-preserving solution to this equation once the collis
rates are homogeneous functions of the masses of colli
particles. These self-preserving solutions have played an
tremely essential role in understanding the regimes of
perse particle coagulation.

However, the reality destroys the sweet self-preserv
picture of the asymptotic behavior of coagulating system
The homogeneity of the collision term is often broken by t
intervenience of some important accompanying proces
like particle sources, the processes of particle losses, con
sational growth of particles, etc. In these cases the invaria
with respect to the scaling transformations, providing the
istence of the self preserving regimes is broken, andexact
self-preserving regimes simply do not exist.

Still the asymptotical self-preservation can exist. Recen
@19#, while studying the nucleation-condensation-coagulat
formation and growth of aerosol particles we encounte
such a case. The problem of the existence of self-preser
solutions, however, remained unsolved. Only now we
solved this problem completely, found convincing argume
in favor of the existence of self-preserving regimes of coa
lation condensation, and derived the equations describing
shape of asymptotic particle mass spectra.

This paper focuses on the consideration of the time e
lution of coagulating systems, in which a constant in tim
source produces a condensable substance~condensable va-
por, in what follows! whose molecules deposit on the su
©2001 The American Physical Society05-1
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faces of coagulating disperse particles. The mass of the
perse phase grows with time, and the coagulation proc
accelerates.

After formulating the model and the basic assumptions
Sec. II, we give a classification of the asymptotic se
preserving regimes and derive the equations defining
shapes of the particle-mass spectra~Sec. III!. Section IV con-
siders a couple of exactly soluble models that help one
understand how the system drives at the self-preserving
gimes. In Sec. V we summarize the results and illustrate
theory by a realistic example: coagulation-condensa
growth of aerosols in free molecular regime. This exam
had been considered by us in Ref.@19# within the log-normal
approximation.

In what follows, we deal withnonsingularmass distribu-
tions, i.e., all integrals appearing in our consideration
assumed to be convergent. Most authors investigating
asymptotic behavior of coagulating mass spectra ope
with these distributions. There exists another type of dis
butions:singularmass distributions@20–22#, which require a
much less straightforward approach.

II. BASIC EQUATIONS

Consider a spacially uniform disperse system and ass
that:

~i! There is a time independent source of condensa
vapor of productivityI.

~ii ! Initially existing disperse particles can coagulate a
grow simultaneously by condensing the vapor molecu
~monomers!.

~iii ! The rates of coagulation and condensation are ho
geneous functions of the particle masses.

According to above assumptions the set of evolut
equations looks as follows. The rate of change with time
the monomeric concentrationC(t) is

dC

dt
5I 2aCwg , ~1!

where I is the productivity of the external source of mon
mers, and

a~g!5agg ~2!

is the condensation rate@a is a constant,g is the particle
mass~in the units of the monomer mass!#. The moments of
particle-mass distributionwg(t) are defined as follows:

wg~ t !5E
0

`

ggN~g,t !dg, ~3!

with N(g,t) being the particle-mass spectrum„N(g,t)dg is
the number concentration ofg-mers within the mass interva
@g,g1dg#….

The first term on the right-hand side~rhs! of Eq. ~1! in-
creases the monomer concentration because of the actio
the source. The last one is responsible for depleting the c
centration of monomers due to their condensation onto
surfaces of disperse particles.
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The continuity equation

]N
]t

1aC
]

]g
ggN5~KNN!g ~4!

governs the time evolution of the particle-mass spectrum
to condensation@the second term on the left-hand side of E
~4!# and coagulation~the rhs of this equation!. The coagula-
tion term (KNN)g has well known form

~KNN!g5
1

2E0

g

K~g2 l ,l !N~g2 l ,t !N~ l ,t !dl

2N~g•t !E
0

`

K~g,l !N~ l ,t !dl. ~5!

HereK(g,l ) is the coagulation kernel@the rate of the proces
(g)1( l )→(g1 l )].

Equations~1! and ~4! are subject to initial conditions
whose details are of no importance in the asymptotic an
sis.

Two integral equalities will be of use further on. Integra
ing Eq. ~4! over all g gives

dN~ t !

dt
52

1

2E0

`

K~g,l !N~g,t !N~ l ,t !dgdl, ~6!

whereN(t)5*0
`N(g,t)dg is the total number concentratio

of particles. The second equality reflects the mass conse
tion. Let us multiply both sides of Eq.~4! by g and again
integrate over allg. Then, noticing that*0

`g(KNN)g)dg
50, one finds

dM

dt
52aCE

0

`

g
]ggN

]g
dg5aCwg~ t !, ~7!

whereM (t)5*0
`gN(g,t)dg is the total mass concentratio

of the disperse phase. On combining this result with Eq.~1!
givesdtM5dtC1I or

M ~ t !2M05It 2C~ t !. ~8!

Here M05M (0) is the initial mass concentration. The ze
initial condition is imposed onC(t): C(0)50.

In what followsK(g,l ) is assumed to be a homogeneo
function of its variables,

K~ag,al !5alK~g,l !, ~9!

with l being the homogeneity exponent.
We restrict our consideration with 0<l,1, 0<g<1.

This choice is stipulated by some physical reasons~see, e.g.,
@5#!, although negativel andl.1 are not forbidden. In the
latter case the coagulation process gives rise to gelatin,
the formation of objects whose concentration is zero in
thermodynamic limit ~see, e.g., @15#!, and the Smolu-
chowskii equation does not work after the gel has formed
does not work at all. The case of negativel is not of wide
physical interest.
5-2
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In what follows the system of unitsa5I 51 is used, i.e.,
all concentrations are measured in the units ofAI /a, and
time in 1/AIa.

III. ASYMPTOTIC STAGE

Now let us return to Eq.~1!. At the late stage of evolution
of the system the values ofC(t) andwg(t) are expected to
be monotonous functions of time. Then it is possible
imagine four situations.

~i! The monomer concentration grows with time slow
than t, thendtC on the lhs of Eq.~1! can be neglected and

C~ t !'
1

wg~ t !
. ~10!

The mass of disperse fraction grows asM't, i.e., all vapor
mass converts to disperse phase.

~ii ! The monomer concentration grows with time
C(t)'t, while the mass of the disperse phase also grows,
slower thant,

M ~ t !}ts with 0,s,1. ~11!

~iii ! The monomer concentration grows ast, while the
mass of the disperse fraction goes to a constant.

~iv! The monomer concentration grows with time linear

C~ t !'at, ~12!

with a,1. The mass of the disperse phase then also gr
linearly,

M ~ t !2M05~12a!t. ~13!

Below we derive the conditions for the realization of ea
case and the equations for the asymptotic mass spectra

(a) Case (i). Let us rewrite continuity equation~4! taking
into account Eq.~10!. The result is

]N
]t

1
1

wg~ t !

]ggN
]g

5~KNN!g . ~14!

We state that Eq.~14! admits a self-preserving solution of th
form

N~g,t !5A~ t !c„gB~ t !…, ~15!

with A(t), B(t), and c(x) being yet unknown functions
Indeed, substituting Eq.~15! into Eq. ~14! gives

Ȧc1A
Ḃ

B
xc81

B2

fg
~xgc!85

A2

B11l
~Kcc!x , ~16!

where

fg5E
0

`

xgc~x!dx. ~17!

The final equation forc should not contain anyt dependen-
cies that imposes the conditions
03160
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Ȧ}A
Ḃ

B
}B2}

A2

B11l
. ~18!

Set~18! is overdetermined, i.e., it comprises three equatio
for two unknown functionsA(t) and B(t). Since exact
equalities are not implied in Eq.~18!, there exists a solution
to this set: power functions oft meet conditions~18!,

A~ t !5at2j, B~ t !5bt2h. ~19!

The power exponentsj andh are found balancing the pow
ers of time in Eq.~18!,

j5
31l

12l
, h5

2

12l
. ~20!

The constantsa andb can be included to the definition of th
function c and thus put unitya5b51 in the final equation
for c,

2
31l

12l
c2

2

12l
xc81

1

fg
~xgc!85~Kcc!x . ~21!

Multiplying both sides of Eq.~21! by x and integrating over
all x give

f15E
0

`

xc~x!dx51. ~22!

Equation~15! together with Eqs~19! and ~20! provides the
asymptotically linear growth of the total mass concentrat
with time,

M ~ t !2M05E
0

`

gN~gt!dg't. ~23!

Now let us formulate the conditions for realizing the ca
~i! in terms ofl andg. Using the definition ofwg(t) Eq ~3!,
and the self-similar distribution Eq.~15! give C(t)
51/wg(t)}B(11g)/A}t r with

r 5j2h~11g!5
11l22g

12l
. ~24!

The condition allowing for ignoringdtC in Eq ~1! is r ,1 or

g.l. ~25!

(b) Case (ii). If wg(t) drops with time sufficiently fast,
then at larget the vapor concentrationC}t. The mass con-
centration of the disperse phase grows slower thant. Conti-
nuity equation~4! in this case takes the form

] tN1t]gggN5~KNN!x . ~26!

The substitution ofN(g,t) in the form of Eq.~15! and the
requirement the functionc to be independent oft yield

Ȧ}A
Ḃ

B
}tAB12g}

A2

B11l
. ~27!
5-3
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Again, the power functionsA}t2j, B}t2h meet conditions
~27! if

j5
312l2g

12g
, h5

2

12g
. ~28!

Using Eqs.~15! and~28! allows for deriving the condition
for the mass concentration not to grow very fast,

M ~ t !5
A

B2E0

`

xc~x!dx}ts, ~29!

where

s5
122l1g

12g
.

Condition~11! 0,s,1 gives two simultaneous restriction

g,l

and

g.2l21. ~30!

The equation for the universal functionc(x) now looks as
follows:

2
312l2g

12g
c2

2

12g
xc81

d

dx
xgc5~Kcc!x . ~31!

On multiplying this equation byx and integrating over allx
give

f15
12g

122l1g
fg . ~32!

(c) Case (iii). At g<2l21 the condensation process
slow, and only a finite part of the condensable substa
converts to the disperse phase. This means that the con
sation process becomes ineffective at large time and can
be ignored.

If the total mass concentration of the coagulating syst
does not change with time, the functionsA(t) andB(t) are
linked by the relation

A~ t !5M`B2~ t !, ~33!

where@see Eq.~7!#

M`5M01E
0

`

C~ t !wg~ t !dt. ~34!

Let us return to Eq.~27!, which gives nowḂ52kB22l

or

B~ t !5@~12l!kM`t#21/(12l), ~35!

wherek is a separation constant.
We can now find the condition at which it is possible

ignore the condensation term@the third term in Eq.~27!#. To
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this end we have to compare the termȦ}BḂ
}t2(32l)/(12l) with tAB12g}t2(22g1l)/(12l). The latter
expression should drop down faster than the former, o
2l,22g1l. This condition is equivalent to

g,2l21. ~36!

The equation for the universal functionc(x) describing
the asymptotic mass spectra in this case has the form

22c2xc85kM`~Kcc!x . ~37!

The factorkM` can be removed by a redefinition of th
function c and then found by using the normalization co
dition *0

`xc(x)dx51 that fixes the value of the separatio
constantk.

It is seen that ifc(x) is a solution to Eq.~37!, then the
function

c1~x!5
1

x0
11l

cS x

x0
D ~38!

also meets this equation, withx0 being an arbitrary scale
whose value is finally fixed by the condition~22!.

At g52l21 the mass concentration is expected to gr
with time as a power of logarithm,M} lnst. The mass distri-
bution is then sought in the form

N~g,t !5D lnstB2~ t !c„gB~ t !…. ~39!

The term responsible for condensation can still be neglec
~it will be shown a bit later!. Then the power balance in th
equation

lnstBḂ} ln2stB32l ~40!

gives within the logarithmic accuracy,

B~ t !}~ t lnst !1/(12l). ~41!

The exponents is readily found from Eq.~7!,

Cfg~ t !}t lnstB2(12l)}
1

t lnst
. ~42!

Then, integrating Eq.~7! givesM} ln12st. On the other hand
we assumedM (t)} lnst. Hence,s51/2 and

B~ t !}~ tAln t !21/(12l). ~43!

The mass concentration grows as

M ~ t !}Aln~ t !. ~44!

We are now ready to show that the condensation term d
not contribute asymptotically and can be thus ignored.
this end we find the ratioBḂ/AB(12g). Taking into account
thatA5B2 andg52l21, we find that this ratio grows with
time as lnt.

(d) Case (iv). At g5l both, the vapor and the mass co
centrations grow linearly witht. On substitutingC5at into
5-4
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Eq. ~4! now gives the same balance of powers as in the c
~ii ! @which coincides now with the result Eq.~20!#, and the
equation for the universal functionc,

2
31l

12l
c2

2

12l
xc81a~xgc!85~Kcc!x . ~45!

Instead of Eq.~22!, however, we find

f15afg . ~46!

The mass also grows linearly as prescribed by Eq.~13!.

IV. EXACTLY SOLUBLE MODELS

Here we analyze two exactly soluble models of t
condensation-coagulation process:~i! K(x,y)51, l50, g
50, ~ii ! K(x,y)51, l50, g51.

A. Model KÄ1, gÄ0

We analyze first the modelK51,g50 and restrict our-
selves by considering the exact self-preserving spect
whose form is easily conjectured,

N~g,t !5A~ t !e2gB(t). ~47!

Substituting suchN(g,t) into Eqs.~1! and~4! yields the set
of equations forC, A, andB,

Ċ512
CA

B
, Ȧ5CAB2

A2

B
, Ḃ52

1

2
A. ~48!

The initial conditions to these equations are:A(0)5A0 ,
B(0)5B0 , C(0)50. Set~48! has the integral

C~ t !1
A~ t !

B2~ t !
5t1M0 , ~49!

where M05A0 /B0
2. This is just the mass conservation:C

1*0
`gN(g,t)dg5t1t0. This integral allows one to find the

asymptotic powerlike solution to set~48!,

A~ t !'
20

t3
, B~ t !'

5

t2
. ~50!

Numerical analysis of the solution of these equations c
firms the asymptotics Eq.~50!. The time dependencies of th
vapor concentrationC(t), particle number concentratio
N(t), and particle-mass concentrationM (t) are shown in
Figs. 1~a!–1~c! ~curvesA) as the functions of time.

The universal function

c~x!520e25x ~51!

is seen to be normalized to 4/5 rather than to unity, wh
corresponds to the linear growth ofC(t) with time: C(t)
't/5, i.e., 1/5 of the total mass does not convert to dispe
phase. Of course, thus found functionc(x) meets Eq.~45!.
The universal function is shown in Fig. 2~curveA).
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FIG. 1. Time dependencies of vapor concentration~a!, particle

number concentration~b!, and mass concentration~c! for exactly
soluble modelsA andB. The concentrations are given in the uni
AI /a and time inA1/Ia.
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B. Model KÄ1, gÄ1

We again will try to find the particle mass distribution
the exponential form of Eq.~47!. The equations forA(t),
B(t), andC(t) take the form atl50, g51:

Ȧ1CA52
A2

B
, Ḃ1CB52

A

2
, ~52!

Ċ512C~ t1M02C!. ~53!

Equation~53! has the asymptoticsC(t)'1/t. On substituting
A'a/tj andB'b/th into Eq. ~52! we find j53 andh52,
in accordance with Eq.~20!. Two equations fora andb give
only one relation between these valuesa52b. The constant
a is defined from the conditionM (t)'t at larget or A/B2

't. This condition givesa54 andb52, or

c~x!54e22x. ~54!

Now let us try to reproduce this result using th
asymptotic theory. Equation~21! takes the form

22c2xc85
1

2E0

x

c~x2y!c~y!dy2c~x!E
0

`

c~y!dy.

~55!

The attempt to find the solution to this equation in the fo
c(x)5ae2bx gives the result Eq.~54!.

Figures 1~a!–1~c! show the time dependencies of th
functionsC(t), N(t), andM (t) for this case~curvesB). In
contrast to the just considered model the vapor conde
much faster, and its concentration drops as reciprocal tim
large t @Fig. 1~a!#. The mass is seen to grow linearly wit
time. The functionc(x) for this case is shown in Fig. 2
~curveB).

FIG. 2. Universal functionsc(x) describing the self-preservin
mass distributions for two exactly soluble modelsA and B. Both
axes are nondimensional.
03160
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V. RESULTS AND DISCUSSION

The main results of this paper may be summarized
follows.

~1! We have shown that the self-preserving regimes
coagulation condensation can exist even in source-enha
systems. The mass spectrum of the disperse phase a
asymptotic stage has the form

N~g,t !5A~ t !c„gB~ t !…. ~56!

The functionc(x) defining the shape of the self-preservin
mass spectrum is the solution of Eqs.~21!, ~31!, ~37!, and
~45!. Since the functionc(x) was assumed to be integrab
at x50 ~nonsingular distribution!, it is possible to express
the functionsA(t) andB(t) in terms of the numberN(t) and
the massM (t) concentrations of disperse particles. Indee
since A(t)5M (t)B2(t) and B(t)5N(t)/@M (t)f0#, the
asymptotic mass spectrum can be rewritten as

N~g,t !5
N2~ t !

M ~ t !f0
2
cS gN~ t !

f0M ~ t ! D . ~57!

Equation~57! is the Friedlander form of the self-preservin
solutions of the coagulation kinetic equation widely appli
for analyzing the asymptotic behavior of free coagulati
systems~see @2–4#!. Our result Eq.~57!, in addition, in-
cludes the time dependence of the particle-mass conce
tion coming from the accompanying condensation proce
Of course, the equations defining the shape of the s
preserving mass spectra are different from the case of
coagulation, except for Eq.~37! which describes coagulatio
in the system with finite mass concentration.

~2! We have considered four possible regimes
coagulation-condensation.

~i! The disperse particles consume~asymptotically! all
condensable vapor and their mass grows linearly with tim
The coagulation process is so slow that the vapor conde
tion is efficient enough despite the coagulation diminish
the particle number concentration, average surface, or o
moments responsible for the rate of condensation proc
The asymptotic time dependencies of mass and number
centrations of disperse phase and the vapor concentratio

M ~ t !'t, N~ t !}t2(11l)/(12l),

C~ t !}t (11l22g)/(12l). ~58!

The condition for the realization of this case isl,g, g
.2l21.

~ii ! In the opposite case, when condensation goes slo
than coagulation, the mass of disperse fraction grows slo
than t, i.e., the coagulating disperse phase becomes a no
fective sink for the condensable matter. In this case

M ~ t !}t (122l1g)/(12g),

N~ t !}t2(112l2g)/(12g), C~ t !'t. ~59!

The condition for the realization of this situation isl.g.
5-6
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~iii ! Coagulation goes so swiftly that only afinite part of
the vapor mass is able to deposit onto the particle surface
this case the coagulation process goes like in free syste
i.e.,

M ~ t !5const, N~ t !}t1/(12l), C~ t !'t. ~60!

This happens atg,2l21. At g52l21 the mass concen
tration grows logarithmically with time. Although the equ
tion for c still retains the form~37!, the dependencies ofM,
N, andC on t are different and look as follows:

M ~ t !}Aln t, N~ t !}~ t lnl/2t !21/(12l),

C~ t !}
1

tAln t
. ~61!

~iv! At g5l the disperse and vapor phases share the m
of vapor from the source and grow linearly with time. In th
case

M ~ t !}t, N~ t !}t $~11l)/12l%, C~ t !}t. ~62!

The models of preceding section correspond to the cases~iv!
and ~i!, respectively.

FIG. 3. Universal functionc(x) describing the self-preservin
mass distribution of disperse particles growing by simultaneous
agulation and condensation in free molecular regime. Both axes
nondimensional.
w

y

03160
In
s,

ss

We conclude this section by demonstrating the num
cally found self-preserving mass spectrum for the free m
lecular regime of aerosol particle growth~when the mean
free path of the carrier gas molecules exceeds the par
size!. In this case

K15~g1/31 l 1/3!2A1

g
1

1

l
, l51/6, g52/3. ~63!

Although this coagulation kernel is an idealization~its homo-
geneity is broken due to the van der Waals attraction of c
liding particles! the simple expression Eq.~64! is widely
used for practical needs~see, e.g., Ref.@23# and references
therein!.

The result of calculations is shown in Fig. 3. The se
similarity distribution has a humplike form with no singula
ity at x50 that allows one to find the asymptotic time d
pendencies of the moments,

N~ t !}t27/5, f1/3~ t !}t211/5, f2/3~ t !5t1/5. ~64!

VI. CONCLUSION

Coagulation processes in condensing systems displa
number of self-preserving regimes. These regimes are at
uted to the asymptotic stage of evolution of the dispe
systems when they ‘‘forget’’ the initial conditions and
characterized by some self-established scales.

The simplifications resulting from the application of th
self-preservation hypothesis are enormous. In many case
self-preserving asymptotic solutions even replace
straightforward numerical analysis, when the latter becom
powerless to give conclusive results on the evolution of
agulating systems at large times. The fact that the s
preserving regimes are realizable in describing the d
stages of evolution of coagulating-condensing systems is
from being self-evident.

From the practical point of view the free molecular r
gime of particle growth is of most interest, because all ae
sol technologies for nanoparticle production deal with t
aerosol particles in free molecular regime. In this case
asymptotic mass spectrum is a nonsingular humplike fu
tion, which, in principle, can be approximated by a lo
normal distribution.
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