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Nonsingular self-preserving regimes of coagulation-condensation process
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Growth of disperse particles is considered assuming that the preexisting disperse particles coagulate and
grow simultaneously by condensing a low volatile substaregor, in what follow$ whose concentration is
permanently refreshed by a spacially uniform and constant in time source. The kinetics of the condensation-
coagulation process is studied under the assumption that the condensation rate and coagulation kernels are
homogeneous functions of the particle masses. The power exponents characterizing these functions define the
asymptotic self-preserving regimes of the particle growth. Four such regimes are defigd¢tesimass of the
disperse phase consumes all vapor and grows linearly with time, while the vapor concentratiofogm®ves
dropg with time as its powes<1; (ii) the mass of the disperse phase grows slower than a linear function of
time, while the vapor concentration grows asymptotically as tifiie; the mass of disperse phase remains
finite; and(iv) both, the mass of disperse phase and the vapor concentration grow linearly with time. For all
above regimes the equations are derived defining the shape of the asymptotic mass distribution. The latter is
shown to depend on a combination of the particle mass and time. The theory is illustrated by two exactly
soluble models, and numerical results for the condensation-coagulation growth of aerosol particles in free
molecular regime.
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[. INTRODUCTION Once the rate of the elementary coalescence act is known

as a function of the masses of colliding particles, the kinetics

The self-preserving dynamics is not a rarity for nonlinearof coagulation processes is described by the Smoluchowskii

systems. Still every new self-preserving solution of a nonlinkinetic equation, the right-hand side of whi¢tme collision

ear dynamic equation is always an event. Self-preserving reerm) balances the gain and the loss in the cluster population
gimes are usually attributed to the asymptotic behavior obf given mass. The collision term is usually quadratic in the
complex nonlinear systems when the system “forgets” thecluster concentrations, which permits one to construct the
initial conditions at large times. The self-preserving regimesself-preserving solution to this equation once the collision

in coagulating systems are of special importance and havigstes are homogeneous functions of the masses of colliding

been studied already for more than half a cenfdry3). particles. These self-preserving solutions have played an ex-

The investigations of coagulation processes receivegemely essential role in understanding the regimes of dis-
much attention in the last several decades from the spemab—erse particle coagulation.

idStS of very di\;ersi[(re].ar('a:qsatnihnolt. ?nlgltﬁhysric)s There arel ‘ However, the reality destroys the sweet self-preserving
eep reasons forthis. First, ) € ist of the pnénomena relatef o of the asymptotic behavior of coagulating systems.
to coagulation is impressive: aging of aerodisperse syste

and hydrosolg§1,2,4—4, formation of astrophysical objects . € homogeneity of the <_:o||ision term is often b_roken by the
[7], formation o,f t’raffic’ jamg8.9], sol-gel transitiongsee intervenience of some important accompanying processes

Ref.[10] and references thergirevolution of random graphs Iike_ particle sources, the processes of particle Iosse_s, co_nden-
[11]—the problem, which is, in turn, related to a number Ofsz';.1t|onal growth of pamgles, etc. In thege cases thg invariance
social phenomeni2], and evolution of fractal systenfi0]. ywth respect to the scaling t_ransforlmatlons, providing the ex-
Particularly coagulation and condensation processes are d§tence of the self preserving regimes is broken, exdct
sential in the formation of nanomateridtee, e.g[13]), and  Self-preserving regimes simply do not exist.
in the formation of the atmospheric aerosp#s5,14. The Still the asymptotical self-preservation can exist. Recently
latter process is of great importance in considering the cli{19], while studying the nucleation-condensation-coagulation
mate changes via aerosol-cloud-climate interactions. Secont@rmation and growth of aerosol particles we encountered
being simple from the first sight, this process reveals a hugsuch a case. The problem of the existence of self-preserving
diversity of regimes and even unexpected new phenomergolutions, however, remained unsolved. Only now we re-
like sol-gel transition$15—18§. solved this problem completely, found convincing arguments
The physics of the coagulation process is surprisinglyin favor of the existence of self-preserving regimes of coagu-
simple: two clusters containing respectivajyandl elements  lation condensation, and derived the equations describing the
(monomerg coalesce and produce irreversibly one cluster ofshape of asymptotic particle mass spectra.
the total masg+1, This paper focuses on the consideration of the time evo-
lution of coagulating systems, in which a constant in time
source produces a condensable substdocrdensable va-
(g9)+(H—(g+1). por, in what follows whose molecules deposit on the sur-
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faces of coagulating disperse particles. The mass of the dis- The continuity equation
perse phase grows with time, and the coagulation process
accelerates. 3/\/
After formulating the model and the basic assumptions in It
Sec. Il, we give a classification of the asymptotic self-
preserving regimes and derive the equations defining thgoverns the time evolution of the particle-mass spectrum due
shapes of the particle-mass spe¢8ac. Ill). Section IV con-  to condensatiofthe second term on the left-hand side of Eq.
siders a couple of exactly soluble models that help one t¢4)] and coagulatiorithe rhs of this equationThe coagula-
understand how the system drives at the self-preserving réion term (KNN)4 has well known form
gimes. In Sec. V we summarize the results and illustrate the
theory by a realistic example: coagulation-condensation
growth of aerosols in free molecular regime. This example (KNN)g= zf K(g=1.HMg=1.)MI.dl
had been considered by us in Ref9] within the log-normal
approximation. *
In what follows, we deal witmonsingularmass distribu- —N(g-t)fo K(g,.hH Ml tydl. ®)
tions, i.e., all integrals appearing in our consideration are
assumed to be convergent. Most authors investigating thelereK(g,!) is the coagulation kern¢the rate of the process
asymptotic behavior of coagulating mass spectra operatgy)+(1)—(g+1)].
with these distributions. There exists another type of distri- Equations(1) and (4) are subject to initial conditions
butions:singularmass distributionf20—-22, which require a  whose details are of no importance in the asymptotic analy-

aC—gW—(KNN)g (4

much less straightforward approach. sis.
Two integral equalities will be of use further on. Integrat-
Il. BASIC EQUATIONS ing Eq.(4) over allg gives
Consider a spacially uniform disperse system and assume dN(t) 1 (=
that: T:_Efo K(g,HMag,t)NVl,t)dgdl, (6)

(i) There is a time independent source of condensable
vapor of productivityl.

(i) Initially existing disperse particles can coagulate an
grow simultaneously by condensing the vapor molecules.

dWhereN(t) JoMag,t)dg is the total number concentration
f particles. The second equality reflects the mass conserva-
ion. Let us multiply both sides of Ed4) by g and again

(monomers
(iii ) The rates of coagulation and condensation are homdtégrate over allg. Then, noticing that/;g(KAN)g)dg
geneous functions of the particle masses. =0, one finds
According to above assumptions the set of evolution dM = gg"N
equations looks as follows. The rate of change with time in Z = _acj g dg=aCe. (1), (7)
the monomeric concentratidd(t) is dt 7
dC whereM (t) = [3gN(g,t)dg is the total mass concentration
i~ T aCey. @D of the disperse phase. On combining this result with (&g.

givesdM=d,C+1 or
wherel is the productivity of the external source of mono-

mers, and M(t)—Mgy=I1t—C(t). (8
a(g)=ag” (2 Here My=M(0) is the initial mass concentration. The zero

. ) ) ) . initial condition is imposed oi€(t): C(0)=0.

is the condensation rafer is a constantg is the particle In what followsK(g,!) is assumed to be a homogeneous

mass(in the units of the monomer magsThe moments of  fynction of its variables,
particle-mass distributiop (t) are defined as follows:

K(ag,al)=aK(g,l), (9)

= Y
@5t Jo g"Mag.t)dg, @ with \ being the homogeneity exponent.

We restrict our consideration with=ON<1, O=vy=<1.

with A{g,t) being the particle-mass spectrui{g,t)dg is  This choice is stipulated by some physical reas@es, e.g.,
the number concentration gmers within the mass interval [5]), although negativa andA>1 are not forbidden. In the
[g,9+dg]). latter case the coagulation process gives rise to gelatin, i.e.,

The first term on the right-hand sidehs) of Eq. (1) in-  the formation of objects whose concentration is zero in the
creases the monomer concentration because of the action tfermodynamic limit (see, e.g.,[15]), and the Smolu-
the source. The last one is responsible for depleting the corchowskii equation does not work after the gel has formed or
centration of monomers due to their condensation onto thedoes not work at all. The case of negativas not of wide
surfaces of disperse patrticles. physical interest.

031605-2



NONSINGULAR SELF-PRESERVING REGIMES . . . PHYSICAL REVIEW E 64 031605

In what follows the system of unitge=1=1 is used, i.e., . B A2
all concentrations are measured in the unitsyofa, and AxA— xB2x . (18
. . B Bl+k
time in 1Nl a.

Set(18) is overdetermined, i.e., it comprises three equations
for two unknown functionsA(t) and B(t). Since exact
equalities are not implied in E¢18), there exists a solution
to this set: power functions dfmeet conditiong18),

. ASYMPTOTIC STAGE

Now let us return to Eq(1). At the late stage of evolution
of the system the values @(t) and ¢,(t) are expected to
be monotonous functions of time. Then it is possible to (19)
imagine four situations.

(i) The monomer concentration grows with time slowerThe power exponents and  are found balancing the pow-
thant, thend;C on the Ihs of Eq(1) can be neglected and grs of time in Eq(18),

A(t)=at ¢, B(t)=bt 7.

2

C(t)”v" n= ﬁ

(10) (20

1
e (1)
The mass of disperse fraction growsMs-t, i.e., all vapor  The constanta andb can be included to the definition of the
mass converts to disperse phase. S function ¢ and thus put unitp=b=1 in the final equation
(it) The monomer concentration grows with time asfor
C(t)~t, while the mass of the disperse phase also grows, but

slower thant, 3+A\

2 1
TIN T TV - (X) = (K. (2D)
M(t)oct® with 0<s<1. (11) Y
Multiplying both sides of Eq(21) by x and integrating over

(iii) The monomer concentration grows gswhile the all x give

mass of the disperse fraction goes to a constant.

(iv) The monomer concentration grows with time linearly, o
¢1=J Xp(x)dx=1. (22
C(t)~at, (12 0

with a<1. The mass of the disperse phase then also growsguation(15) together with Eq419) and (20) provides the

linearly, asymptotically linear growth of the total mass concentration
with time,

M(t)—Mo=(1—a)t. (13)

Below we derive the conditions for the realization of each

case and the equations for the asymptotic mass spectra.
(a) Case (i) Let us rewrite continuity equatiof#) taking
into account Eq(10). The result is

N 1 9g'N

ot e () a9 (14

= (KA.

We state that Eq14) admits a self-preserving solution of the
form

Mg, =A) g(gB(1)),

with A(t), B(t), and ¢(x) being yet unknown functions.
Indeed, substituting Eq15) into Eq. (14) gives

(19

. B B2 2
A+ ASXY + == (X)) = (Ky)y, (16)
y B
where
b= jo X7(x)dx. 17

The final equation fogy should not contain anydependen-
cies that imposes the conditions

M(t)—Mo=f:gN<gt>dg~t. 23

Now let us formulate the conditions for realizing the case

(i) in terms of\ andy. Using the definition ofp,(t) Eq(3),
and the self-similar distribution Eq.15 give C(t)
=g, (t)xBE M/ Acct” with

1+N—2y
r=£&—n(l+y)=

1o 24

The condition allowing for ignoringl,C in Eq (1) isr<1 or

y>N\. (25

(b) Case (i) If ¢,(t) drops with time sufficiently fast,
then at large the vapor concentratio@«t. The mass con-
centration of the disperse phase grows slower th&onti-
nuity equation(4) in this case takes the form

INF1dg9"N=(KNN),.

The substitution of\(g,t) in the form of Eq.(15) and the
requirement the functiogs to be independent dfyield

(26)

2

. B .
AxAg < tAB! Y 27

Bl+k'
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Again, the power functionéct ¢, Boct™ 7 meet conditions

(27) if

_3+2N—y 2 28
5——1_7 Ayt (28)

Using Eqgs{(15) and(28) allows for deriving the condition
for the mass concentration not to grow very fast,

Mt—ifw dxect® 29
()—Bzoxw(X)x : (29

where

. 1-2\+vy
1-y °
Condition(11) 0<s<1 gives two simultaneous restrictions,
y<\
and
y>2N—1. (30

The equation for the universal functiaf(x) now looks as
follows:

3+2N—vy 2 , d Yo (K 31

On multiplying this equation by and integrating over ak
give

1-vy

¢1=m¢y- (32

PHYSICAL REVIEW E 64 031605

this end we have to compare the term=BB
oat” B7NIAN with tABL et~ 7 Y*N/A=N | The atter
expression should drop down faster than the former, or 3
—\<2—vy+A\. This condition is equivalent to

y<2n—1. (36)

The equation for the universal functiof(x) describing
the asymptotic mass spectra in this case has the form

— 2= x¢p" = kMo (Kipih) . (37

The factor kM., can be removed by a redefinition of the
function ¢ and then found by using the normalization con-
dition [{xy(x)dx=1 that fixes the value of the separation
constantx.

It is seen that if/(x) is a solution to Eq(37), then the
function

1 X
(0= ¢( —) (39)

Xp Xo

also meets this equation, witky being an arbitrary scale
whose value is finally fixed by the conditid22).

At y=2\—1 the mass concentration is expected to grow
with time as a power of logarithniM «In’t. The mass distri-
bution is then sought in the form

Mag,t)=D IntB?(t) (g B(1)). (39

The term responsible for condensation can still be neglected
(it will be shown a bit later. Then the power balance in the
equation

IN“tBBxIn29tB3~* (40)

gives within the logarithmic accuracy,

(c) Case (iii) At y<<2\—1 the condensation process is Vi
slow, and only a finite part of the condensable substance B(t)o(t Int) V), (41)
converts to the disperse phase. This means that the conde

sation process becomes ineffective at large time and can thus

be ignored.

If the total mass concentration of the coagulating system Ch ()=t In"tB2E Ve

does not change with time, the functioA¢t) andB(t) are
linked by the relation

A(t)=M_B2(t), (33

where[see Eq.(7)]
M,=Mqy+ J:C(t)qoy(t)dt. (39

Let us return to Eq(27), which gives nowB= — xB?~*
or
B()=[(1—N\)xkMt] YN, (35

wherex is a separation constant.

We can now find the condition at which it is possible to

ignore the condensation terfthe third term in Eq(27)]. To

r;;e exponentr is readily found from Eq(7),

. (42
tIn’t

Then, integrating Eq7) givesM «In'~“t. On the other hand,
we assumedV (t)«In’t. Hence,o=1/2 and

B(t)oc(ty/Int) YA, (43)
The mass concentration grows as
M (t)o< \in(t). (44)

We are now ready to show that the condensation term does
not contribute asymptotically and can be thus ignored. To
this end we find the rati®B/AB*~ ", Taking into account
thatA=B? andy=2\ —1, we find that this ratio grows with
time as Irt.

(d) Case (iv) At y=\ both, the vapor and the mass con-
centrations grow linearly with. On substitutingC=at into

031605-4
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Eq. (4) now gives the same balance of powers as in the case
(i) [which coincides now with the result E(R0O)], and the _
equation for the universal functiop, s
342 2 (K 45 5 A
TN YT oo ralx ) =Ky, (49 '3(-:
'_
Instead of Eq(22), however, we find é 14
=
$1=a¢,. (46) S
The mass also grows linearly as prescribed by E&8§). §
g B
IV. EXACTLY SOLUBLE MODELS
Here we analyze two exactly soluble models of the 00 T 4 6 8 10
condensation-coagulation proces$d: K(x,y)=1, A=0, vy
0, (i) K(x,y)=1, A=0, y=1. NONDIMENSIONAL TIME t
A. Model K=1, y=0 1.0 b
We analyze first the modé{=1,y=0 and restrict our- =
selves by considering the exact self-preserving spectrum z
whose form is easily conjectured, E 087
Mg,h=A(t)e 98O, (47) E A
& 0.6
Substituting such\V{g,t) into Egs.(1) and(4) yields the set S
of equations forC, A, andB, 8
0.4 1
o
. : AZ . 1 ;g B
C=1-—, A=CAB-—=, B=—zA. (49 =
B B 2 >
= 0.2
The initial conditions to these equations am(0)=A,, —

B(0)=B,, C(0)=0. Set(48) has the integral 0 2 4 6 8 10
NONDIMENSIONAL TIME (t)

C(t)+ 2O _iim (49) 12
BZ(t) > c
L . — 10
where Mo=A,/B3. This is just the mass conservatioB: = B
+ [o9Mg,t)dg=t+t,. This integral allows one to find the z
asymptotic powerlike solution to sé48), 8 81
<
o A
20 5 E 64
Alh~=, B(t)~-. (50) z
t t &
=
O 44
Numerical analysis of the solution of these equations con- ©
firms the asymptotics E¢50). The time dependencies of the A
vapor concentrationC(t), particle number concentration § 21
N(t), and particle-mass concentratidti(t) are shown in
Figs. 1@—1(c) (curvesA) as the functions of time. 0 —
The universal function 0 2 4 6 8 10

NONDIMENSIONAL TIME (1)
Y(X)=20e" > (51)

is seen to be normalized to 4/5 rather than to unity, which

corresponds to the linear growth @f(t) with time: C(t) FIG. 1. Time dependencies of vapor concentratian particle
~1/5, i.e., 1/5 of the total mass does not convert to dispersaumber concentratiob), and mass concentratid) for exactly
phase. Of course, thus found functighix) meets Eq(45). soluble modelsA and B. The concentrations are given in the units
The universal function is shown in Fig.(2urveA). Ve and time iny1/l a.
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1.5 2.0

FIG. 2. Universal functiong/(x) describing the self-preserving
mass distributions for two exactly soluble modélsand B. Both
axes are nondimensional.

B. Model K=1, y=1

We again will try to find the particle mass distribution in
the exponential form of Eq(47). The equations foA(t),
B(t), andC(t) take the form ah =0, y=1:

A+CA= A B+CB= A 52
- Ey - Ei ( )
C=1-C(t+My—C). (53

Equation(53) has the asymptotidS(t) ~ 1/t. On substituting
A~a/t* andB~b/t” into Eq.(52) we find é¢=3 and =2,
in accordance with Eq20). Two equations fom andb give
only one relation between these valwes 2b. The constant
a is defined from the conditioM (t)~t at larget or A/B?
~t. This condition givea=4 andb=2, or

Y(X)=4e 2%, (54)

Now let us try to reproduce this result using the

asymptotic theory. Equatiof21) takes the form

1 (x .
~2uxy =5 [ wxywray-v0o [ unay
5

PHYSICAL REVIEW E 64 031605

V. RESULTS AND DISCUSSION

The main results of this paper may be summarized as
follows.

(1) We have shown that the self-preserving regimes of
coagulation condensation can exist even in source-enhanced
systems. The mass spectrum of the disperse phase at the
asymptotic stage has the form

Mg, =A) p(gB(1)).

The functiony(x) defining the shape of the self-preserving
mass spectrum is the solution of Eq&1), (31, (37), and
(45). Since the functiony(x) was assumed to be integrable
at x=0 (nonsingular distributioy it is possible to express
the functionsA(t) andB(t) in terms of the numbeX (t) and
the massM (t) concentrations of disperse particles. Indeed,
since A(t)=M(t)B2(t) and B(t)=N(t)/[M(t) o], the
asymptotic mass spectrum can be rewritten as

(56)

gN(t)

Mo D)

N2(t
(t) ( 57

M(t) $3

Equation(57) is the Friedlander form of the self-preserving
solutions of the coagulation kinetic equation widely applied
for analyzing the asymptotic behavior of free coagulating
systems(see[2—4]). Our result Eq.(57), in addition, in-
cludes the time dependence of the particle-mass concentra-
tion coming from the accompanying condensation process.
Of course, the equations defining the shape of the self-
preserving mass spectra are different from the case of free
coagulation, except for E437) which describes coagulation

in the system with finite mass concentration.

(2) We have considered four possible regimes of
coagulation-condensation.

(i) The disperse particles consuntasymptotically all
condensable vapor and their mass grows linearly with time.
The coagulation process is so slow that the vapor condensa-
tion is efficient enough despite the coagulation diminishing
the particle number concentration, average surface, or other
moments responsible for the rate of condensation process.
The asymptotic time dependencies of mass and number con-
centrations of disperse phase and the vapor concentration are

M(t)~t, N(t)oct™XFN/A=N)

C(t)oct(l+)‘727)/(17)‘)_ (58)
The condition for the realization of this case Ns<vy, y
>2N—1.

(i) In the opposite case, when condensation goes slower

The attempt to find the solution to this equation in the formthan coagulation, the mass of disperse fraction grows slower

y(x)=ae PX gives the result Eq(54).

thant, i.e., the coagulating disperse phase becomes a nonef-

Figures 1a)-1(c) show the time dependencies of the fective sink for the condensable matter. In this case

functionsC(t), N(t), andM(t) for this case(curvesB). In

contrast to the just considered model the vapor condenses

M (t)oct(=2AFN/(A=7),

much faster, and its concentration drops as reciprocal time at

large t [Fig. 1(@)]. The mass is seen to grow linearly with
time. The functiony(x) for this case is shown in Fig. 2
(curveB).

N(t)oct = (AF2A=NA=M  C(t)~t. (59

The condition for the realization of this situationN$> y.
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FIG. 3. Universal function/(x) describing the self-preserving
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We conclude this section by demonstrating the numeri-
cally found self-preserving mass spectrum for the free mo-
lecular regime of aerosol particle growtivhen the mean
free path of the carrier gas molecules exceeds the particle
size. In this case

1 1
Ky= (g 3+1%3)2 Rk A=1/6, y=2/3. (63

Although this coagulation kernel is an idealizati@s homo-
geneity is broken due to the van der Waals attraction of col-
liding particles the simple expression Ed64) is widely
used for practical needsee, e.g., Ref23] and references
therein.

The result of calculations is shown in Fig. 3. The self-
similarity distribution has a humplike form with no singular-
ity at x=0 that allows one to find the asymptotic time de-
pendencies of the moments,

N(ct ™™, pyg(t)oct 15 gy(t)=t15 (64)

mass distribution of disperse particles growing by simultaneous co-

agulation and condensation in free molecular regime. Both axes are

nondimensional.

(iii) Coagulation goes so swiftly that onlyfiite part of
the vapor mass is able to deposit onto the particle surfaces.

VI. CONCLUSION

Coagulation processes in condensing systems display a
number of self-preserving regimes. These regimes are attrib-
Hed to the asymptotic stage of evolution of the disperse

this case the coagulation process goes like in free systemeyStems when they “forget” the initial conditions and is

i.e.,

M(t)=const, N(t)ctY@~N — C(t)~t.  (60)

This happens ay<2\—1. At y=2\—1 the mass concen-
tration grows logarithmically with time. Although the equa-
tion for ¢ still retains the form(37), the dependencies o,

N, andC ont are different and look as follows:

M(t)ecyint,  N(t)ec(t InM2)~HA-M),

1
tyint’

C(t)x (612)

characterized by some self-established scales.

The simplifications resulting from the application of the
self-preservation hypothesis are enormous. In many cases the
self-preserving asymptotic solutions even replace the
straightforward numerical analysis, when the latter becomes
powerless to give conclusive results on the evolution of co-
agulating systems at large times. The fact that the self-
preserving regimes are realizable in describing the deep
stages of evolution of coagulating-condensing systems is far
from being self-evident.

From the practical point of view the free molecular re-
gime of particle growth is of most interest, because all aero-
sol technologies for nanoparticle production deal with the
aerosol particles in free molecular regime. In this case the

(iv) At y=N\ the disperse and vapor phases share the massymptotic mass spectrum is a nonsingular humplike func-
of vapor from the source and grow linearly with time. In this tion, which, in principle, can be approximated by a log-

case

M(t)oct, N(t)octiEHNA=N - C(t)oct, (62)

The models of preceding section correspond to the dases
and (i), respectively.

normal distribution.
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